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INTRODUCTION

Present sources of fossil fuel compounds in Georgia coastal waters
include marine transportation, sewage outfalls and atmospheric fallout.
Possible future sources include releases from offshore oil production,
coastal oil refineries and new industry. This report discusses in
general terms the fate of spilled oil in marine environments. This
is followed by a discussion of the fate and effect of a small �0 gal!
heavy fuel oil spill on an acre of salt marsh on the Wilmington River,
Georgia.

CHAPTER I- FATE OF OIL

A variety of physical, chemical and biological processes affects
the fate of oil in the sea  Figure 1.1!. Physical and chemical processes
rapidly act on oil slicks which generally results in their disappear-
ance within a few days. Components of oil which enter the water also
have short residence times with some carried to the bottom by sedimenta-
tion. Bottom sediments are the ultimate sinks for undegraded oil.
For discussion purposes, this paper has separate sections on processes
acting on oil slicks, oil in water and oil in sediments.
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Fate of Oil in Slicks

Following discharge of oil into water, a slick forms due to the
low water solubility of most components of oil. Currents, waves and
winds spread the oil sl~ck into thin films. Fallah and Stark �976!
reviewed theories and models that describe the movement of oil on
water. Their models develop empirical equations which take into
account the volume of oil spilled, its physical properties, elapsed
time and wind speed. For example, heavy viscous oils do not spread
as rapidly as less viscous types. In the open seas where wind often
determines the direction and speed with which a slick moves, oil
drift velocity is about 3'5 of the wind velocity. In nearshore areas,
tidal forces also control the movement of ail. Slick-transport and
slick-spreading in particular areas are best determined by carrying
out experimental field spills. Jeffrey   1973! fallowed an experimental
spill of 120 tons of light Iranian crude oil in the North Atlantic
which rapidly disappeared after four days.

A first-order equation describes oil concentration changes result-
ing from processes of evaporation  K<!, dissolution  K>!, photochemical
Kp! emul si f i cation   KE ! and biol ogical decay   KB!, resPectively.

dc =  K,K,K,K,K !CV' E' D' p' 8

Approximate decay coefficients for evaporation and dissolution, the
primary forces that remove slick components during the first few days,
have been determined by James  cited in Harrison, 1974! for different
oil fractions. The time required for and relative importance of various
oil-weathering processes are summarized in Figure 1.2.

As soon as slicks form, evaporation removes volatile components.
Hydrocarbons below Cis  which have a boiling point of less than 270'C
and comprise 20 to 505 of most crude oils and 754 or more of many

fuel oils! volatilize in a few days  Harrison et al., 1975; NcAuliffe,
1977a; Ocean Affairs Board, 1975!. Hydrocarbons in the C>s-Cps ~~~g~
 boiling point-250 to 400'C! are volatilized from slicks only to a
limited extent. The rate of evaporation is affected by temperature,
wind speed, solar radiation, thickness of the slick, and composition
of the ail. In an experimental 275-gallon crude oil spill in the
Bahamas, all low-weight aromatics disappeared within the first 90
minutes  Harrison, 1974!. The water temperature was 24'C and wind
speed ranged from calm to 18 mph. It was estimated that one-third of
the oil from the ~Torre ~Can on spill evaporated  Bronnock et al., 1968!.

Dissolution is the dispersal of dissolved compounds and small
dispersed ail droplets into water. Following a spill of a heavy fuel
oil  density af 0.97 g/ml! in Chedabucto Bay, Nova Scotia, small parti-
cles of oil  .01 to 1 mm in diameter! appeared in the upper waters
along the Nova Scotia coast  Forrester, 1971!. It was estimated that
107 tons of the 9500 tons spilled were dispersed inta particles. Lighter
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fuel oils do not form droplets or particles of oil that remain in
the water. The solubility of hydrocarbons drops exponentially as a
function of their molecular volume, so that low-weight aromatics
have relatively high solubility  McAuliffe, 1966!. Toluene, naphtha-
lene, phenanthrene and chrysene comprise an aromatic series with an
increasing number of rings. Their solubilities in water are 515, 32, 1,
and 0.002 mg/L, respectively  Mackay and Shiu, 1977!. Under ail
slicks, therefore, the predominant components are low-weight aromatics,
such as benzene, toluene and xylenes. Under an experimental oil
spill off the United States east coast, the concentration of aromatics
at a depth of 1.5 m was 50 qg/L  McAuliffe, 1977b!. After a large
crude oil spill in the Gu]f of Mexico, less than 1/ of the oil was
in the water  McAuliffe et al., 1975!. In an experimental crude oil
spill carried out in a tank, 5% af the spilled ail entered the water
 Gordon et a]., 1976!.

Evaporation and dissolution are simultaneous and competitive pro-
cesses. Each hydrocarbon evaporates and enters solution at rates depend-
ing upon its vapor pressure and water solubi]ity  McAuliffe, 1977a!.
In most areas, evaporation is far more important in removing ail
slick components than is dissolution. Based on evaporation rate
equations, Harrison et al. �975! predicted that aromatic hydrocar-
bons would evaporate 100 times faster than the rate at which these com-
pounds enter the water. Turbulence increases the surface-volume ratio
of the spilled oil and thus enhances dissolution. Disso]ution also
can be promoted by natural ly occurring surfactants, such as humic acids
and fatty acids, which tend to concentrate in the surface microlayer
 Boehm and quinn, 1974!. Certain oil components photochemica]]y
degrade by solar radiation into polar, surface-active molecules which
promote dissolution of the oil.

Surface-active components in crude oil, such as porphyrins and
carboxylic acids, help to form water-in-oil emulsions, sometimes re-
ferred to as 'chocolate mousse"  Canevari, 1969! because of the color
and consistency. This stable emulsion floats on the water and even-
tually can be carried ashore by winds and waves. Strong turbulent
mixing can introduce emulsified oil into the water column. Fuel
oil or other refined petroleum products with no surfactants do not
farm water-in-oi] emulsions. The time required to form water-in-
oil emu]sians varies from a few hours to several days and depends
on the nature of the oil  Ocean Affairs Hoard, 1975!.

The processes discussed above distribute the components of oil
s]icks into different phases, i.e., air or water, but they do not
degrade the compounds. Photoxidation and microbia] degradation are the
primary processes responsible for degrading the compounds in ail
slicks. Energy from sunlight in the presence of oxygen can transform
hydrocarbons inta a number of oxygenated compounds. Because of their
relatively high water solubility, the products of photoxidation which
include carboxylic acids, alcohols, ketones and phenols, are detected
in the water below oil slicks that have been exposed to ultra-violet
irradiation  Hansen, 1975,1977; Larson et al., 1976!. Aromatic



hydrocarbons are degraded by light more rapidly than aliphatics, and
branched-chain aliphatics are degraded more rapidly than straight-chain
aliphatics. Photoxidation products which have been isolated include
fluorenone and benzoic acid  Hansen, 1975; Larson et al., 1976; Figure
1.3!. The ultraviolet and near-ultraviolet areas of the spectrum are
responsible for degradation since exposure to light above 350 nm does not
degrade oil  Hansen, 1977!. Hansen �975! calculated that three years
would be required to photochemically degrade a .04 mm film of fuel
oil. However, very thin oil films can be photochemically degraded in
a few days  Freegarde and Hatchett, 1970!.

Because of the time needed to initiate microbial degradation of
short-lived oiI slicks, it is assumed that microbial degradation is
less important than other processes discussed above in slick removal.
However, once oil is dispersed into fine droplets or particles or
is deposited on sediment, microbial degradation becomes of great impor-
tance.

After evaporation, dissolution, emulsification, photoxidation and
biodegradation have acted on an oil slick to remove lighter weight com-
ponents, a more viscous residue remains. The res~dual tar balls con-
tain higher-weight hydrocarbons and oxygen and sulfur-containing
compounds, asphaltenes. The percentage of crude oil which reamins
as a residue varies for different oils. Butler et al.   1976! suggested
that as much as 20% of crude oils remains as a residue. The presence
of tar balls in the Mediterranean and North Atlantic has been well
documented  Butler et al., 1970; Levy, 1977!. These tar balls resist
microbial degradation +Davis and Gibbs, 1975!, and it has been estimated
that their lifetime is on the order of several months to a year  Butler
et al., 1976!.

Fate of Oil in Water

Oil can enter the water phase by dissolution or related processes.
The concentration of oil components, whether dissolved or in particles,
decreases exponent~ally with time due to evaporation, absorption to
suspended particles, sedimentation, photochemical oxidation, uptake by
zooplankton or biodegradation  Gearing et al., 1979; Lee et al., 1978!.

Higher-weight aromatics and aliphatics in water adsorb to suspend-
ed particles because of their low water solubility. Lower-weight
hydrocarbons and more polar oil components remain dissolved in the water
 Herbes, 1977; Lee,1977; Meyers and quinn, 1973; Table 1.1!. Sedimenta-
tion of particles carries hydrocarbons to the bottom. Most dissolved
hydrocarbons  in estuarine areas of Georgia! adsorb to detrital parti-
cles, which are mixtures of organic matter, living bacteria, and
small clay particles  Lee, 1977!. Scanning electron micrographs reveal
rough surfaces on these detrital particles, with bacteria fastened
by mucoid pads and fibrillar appendages  Figure 1.4!. Presumably.,
these surfaces provide hydrophobic areas for hydrocarbon adsorption.
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Table l.l. Adsorption of hydrocarbons to particles in estuarine waters.

Amount Adsorbed to
Suspended Particles

 ~!

Concentration of
Hydrocarbon in Water

 pg/liter!
Hydrocarbon

naphthalene

methylnaphthalene

fluorene

benz a!anthracene

benzo a!pyrene

hexadecane

30 0.7

30

15 12

10

71

3
10

8

19

octadecane

anthracene

22

6
22

4

15

Radio'labeled hydrocarbons were added to 100 ml of water collected in the

Skidaway River, Georgia. The concentration of suspended solids in this

estuarine river was 40 mg/L. At the end of 3 hours, the water was fil-

tered and the amount of hydrocarbons on particles was determined.
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Oil slicks and dispersed oil globules adsorb to clays and fine
suspended sediments; and eventually these sediments, with attached
oil globules or oil films, are carried to the bottom   Poi rier and Thiel,
1941; Bassin and Ichiye, 1977!. In open ocean areas, concentrations of
suspended so'lids are relatively low, rarely exceeding 1 mg/L  Schubel,
1974!. In estuaries and other coastal areas, the concentrations of
suspended solids can be quite high. The estuaries of coastal Georgia
have an average suspended so1id concentration of 50 mg/L, wi th
concentrations as high as 600 mg/L during spring tides  Oertel, 1976!.
After a hurricane, the concentration of suspended solids that entered
one part of Chesapeake Bay rose to 10,000 mg/L. In such turbid areas,
dispersed oil is soon removed by sedimentation. A practical applica-
tion to accelerate sedimentation was the use of powdered chalk to
sink Kuwait crude oil spilled by the ~Terre ~Can on  Smith, 1968!.

Zooplankton, including copepods and protozoans, can consume parti-
cles of oil which are subsequently excreted, unmodified, in the feces
 Andrews and Floodgate, 1974; Conover, 1971!. In one oil spill, up
to 20% of the particulate oil in the water was sedimented to the bottom
in zooplankton feces  Conover, 1971!. Copepods also take up dissolved
hydrocarbons from the water. The copepods possess enzyme systems
which metabolize the hydrocarbons to various hydroxylated metabolites
which are later excreted  Corner et alto 1976; Lee, 1975!.

Bacteria, yeasts and filamentus fungi which are capable of degra-
ding oil have been isolated from polluted and pristine waters  Ahearn
and Meyers 1972; Floodgate, 1972; Gunkel, 1973; Miget et ala 6 1969;
Perry and Cerniglia, 1973!. Although occurring in all marine areas,
hydrocarbon-degrading microbes are generally more abundant in chronical-
ly polluted water  Atlas and Bartha, 1973; Tagger et alta 1976!. In
the North Sea,oil-degrading bacteria were most abundant near active
oil fields  Oppenheimer et al., 1977!.

Rates of microbial degradation are influenced by temperature
and nutri ents. Atlas and Bartha �973! found that the number of oi 1-
degrading microbes was very low during the winter in Raritan Bay, New
Jersey. Gibbs et al. �975!, using a continuous growth chamber with
Irish Sea water and Kuwait crude oil, calculated that the microbial
oil degradation rate was 30 mg/L/yr in the summer and ll mg/L/yr in
winter.

Photoxidation, in addi tion to acting on oil slicks, can also de-
grade components of oil in the water. Ultraviolet light does not
penetrate into water, and many of the short wavelengths present in the
visible region attenuate a few meters below the surface. Some high
molecular weight polycyclic aromatic hydrocarbons are degraded by
light longer than 300 nm  e.g., benzo a!pyrene! and can be completely
photoxidized in the seawater within a few days after exposure to
sunlight  Andelman and Suess, 1970!.

All of the processes discussed above act simultaneously to modify
oil. An examp1e of photochemical oxidation combined with microbial
degradation is illustrated in Figure 1.5. Radiolabeled dimethylbenz a!





anthracene was not microbially degraded in the dark in Georgia estuarine
waters. However, when water with dimethylbenz a!anthracene was ex-
posed to sunlight, rapid degradation to '"«~ occurred. Presumably,
photoxidation products of dimethylbenz a!anthracene were fruther de-
graded to COq by microbes.

Fate of Oil in Sediments

Although difficult to quantify in the field, sedimentation pro-
cesses carry significant amounts of oil to the bottom. After a dril1-
ing p'latform spill in the Santa Barbara channel, large quantities of
oil on the bottom were believed to be due to adsorption of oil to
suspended sediments derived from river runoff  Kolpack, 1971!. In shallow
areas, masses of oil can roll along the bottom by waves and currents
and eventually wash ashore to form hard, tarry masses  Clark and Macleod,
1977!. Floating tar balls or emulsions of oils can also be washed
ashore by these same forces. Stranded oil undergoes various weather-
ing processes, but the high boiling components in the larger masses
of oil persist for many years  Blumer et al., 1973!. The sinking of
supertanker Amoco Cadiz off France released 216,000 tons of crude oil,
approximate1y 60,000 tons of which came ashore within the week  Hess,
1978!.

In addition to lateral movement on the bottom, oi l can penetrate
deeper into the sediment, be resuspended into the overlying water,
or be degraded. 'Tidal flow resuspends fine sediments with associated
hydrocarbons' These resuspended sediments can be ingested by benthic
filter feeders, such as clams, mussels and oysters. Oil in the feces
of these animals can release the oil into the water. Smith and Hopkins
�972! found storm-generated transport of bottom sediments on the
continental shelf in water as deep as 80 m. Strong forces generated by
hurricanes can mix the top 10 cm of surface sediments in water as
deep as 35 m  Hayes, 1967!. Thus, Hoffman and  }uinn   1978! suggested
that sediment mobility was a factor explaining the low concentration
of oil found in the bottom sediments after the ~Ar o Merchant spill
in the North Atlantic.

In some coastal areas, oil-derived hydrocarbons remain in the
sediments for many years after the spill  Blumer and Sass, 1972; Scarratt
and Zitko, 1972; Vandermeulen and Gordon, 1976!. Coarser sediments
allow greater penetration than fine unconsolidated sediments  Gundlach
and Hayes, 1978!. Highest concentrations of oil are generally associated
with silt-sized sediments, possibly because these sediments have
a greater area for adsorption  Meyers and quinn, 1973; Hargrave and
Phillips, 1975!.

Coarser sediments, although allowing oil to penetrate to greater
depth, also have high biodegradation rates relative to fine sediments,
possibly because of greater aeration and nutrient flow to the subsur-
face. Also, coarser sediments occur on more exposed coasts so that



all other weathering forces are more effective than in low-energy
areas.

The main factor affecting the persistence of oil in sediments is
the rate of biodegradation which occurs there. Most rapid degradation
occurs at the water-sediment interface  Gardner et al., 1979; Hughes
and NcKenzie, 1975; Lee, 1978; Lee et al., 1979!. Microbial activity
is low below the sediment surface, and oil buried a few centimeters
can remain unmodified for years  Hughes and McKenzie, 1975; Gardner et
al.a 1979!. In many estuaries, subsurface sediments are anaerobic
and hydrocarbon oxidation is extremely slow.

After oil is introduced into sediment, there is a large increase in
hydrocarbon-degrading microbial populations on the sediment surface
 Zobell and Prokop, 1966; Walker et alee 1975!. Straight-chain alkanes
are rapidly degraded by a mixed community of hydrocarbon-degraded microbes.
Branched-chain alkanes, cycloalkanes and aromatic hydrocarbons are
attacked more slowly  Blumer, 1973; Walker et alve 1973!. High boi ling-
point components are very resistant to microbial degradation.

Different crude and refined oils degrade at varying rates because
of variations in the relative amounts of different oil components.
In one experiment, hydrocarbon degrading microbes were a1'lowed to act
on two crude oils  South Louisiana and Kuwait! and two refined oils
 Bunker C and No. 2 fuel oil!. The South Louisiana crude oil was
most susceptible to microbial degradation, and the Bunker C oil was
the least. degraded in the 28-day study  Walker et alia 1976!. The
high content of high molecular weight polycyclic aromatic hydrocarbons
in Bunker C oil may explain its resistant to degradation.

In addition to microbes, marine sediments contain macrofauna
and an interstitial meiofauna community, which is composed of harpactoi-
coid copepods, nematodes, turbellarians and polychaetes  Mare, 1942!.
Many of these benthic species are deposit feeders and are important
in oxidizing and recycling sediment organic matter  Tenore et alia 1977!.
In undisturbed sediment, most microbial activity is restricted to the
surface, but the feeding process of benthic animals mixes the sediment
to depths as great as 15 cm  Rhoads, 1967!. This allows microbes to
degrade organic matter from deeper sediments.

Some polychaete worms, such as Ca itella ca itata, occur in areas
of high oil input  Reish, 1971; Sanders et a ., 1 . Cell-free extracts
of ~Ca itella ~ca itata and other polychaetes have hydrocarbon-metabolizing
enzymes, while whole animals take up polycycl ic aromatic hydrocarbons
from the sediment and metabolize them to various hydroxylated deriva-
tives  Lee et air a 1979!. Thus, polychaetes and other benthic animals
can enhance microbial degradation of subsurface oil hydrocarbons  Gardner
et al., 1979,' Gordon et al., 1978; Lee et alf e 1979; Figure 1.6!.

A general characterization of water masses in the nearshore





Georgia waters is shown in Table 1.2 and Figure 1.7. Zone A contains
highly turbid water  9-200 mg/L of suspended sediment! ejected from the
inlets during ebb tidal flows. Wind effects in this zone are usually
overwhelmed by tidal energy. Zone B is a boundary area which contains
multiple surface di scontinui ty fronts that appear to be remnants of
preceding tidal cyc'les. This zone contains turbi4 surface water mixed
with c1earer shelf water which overrides denser shelf water. Zone C
is c'Iear shelf water with suspended sediment concentrations less than
2.0 mg/L. Currents in this zone responded more to wind than to waters
closer to shore.

The movement of oil spilled in Zone A or 8 is governed by tidal
flow. It is predicted that oil spilled approximately 15 km from shore
would require at least four tida1 cycles to reach the marsh. Oil
spilled within 5 km of shore would reach the marsh on the next tidal
cycle. Because of' tidal movement and longshore currents, oil entering
one sound could subsequently flow out and into adjacent sounds.

Fate of Oil in Coastal ~Gear ia

The fate of oil spilled in Georgia's coastal waters will depend
on the composition of the oil and on external factors such as light and
temperature. Photochemical oxidation, dissolution, emulsification, ad-
sorption to particles, biodegradation and uptake by organisms interact
to affect the fate of oil s1icks and oil in the water. Sedimentation,
as discussed earlier, causes oil in turbid inshore zones to be deposit-
ed on the bottom where it is resuspended into the water, penetrates
deeper into the sediment, or is degraded. The sediment community of
microbes, meiofauna and macrofauna is responsible for degrading oil
in the sediment.
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Table 1.2. General characteristics of nearshore water masses
based on low runoff conditions, October-November
1976. A schematic diagram based on salinity is
presented in Figure 1.7.
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Figure 1,7. Schematic Salinity Structure Characterizing the lonation of
Nearshore Waters off Georgia.

2one A may be very small at locations away from the inlets.
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CHAPTER !I

Fate and Effects of a ~Heav Fuel Oil ~S111 on a Gear<cia Salt Marsh

Heavy fuel oil was added to one acre of a ~Sar ting alterni-
flora salt marsh bordering the Wilmington River, Georgia. A diagrammatic
cross section of the oiled marsh showing the animals sampled is
shown in Figure 2.1. The polycyclic aromatic hydrocarbons selected
for study  Figure 2.2! are similar in structure to other hydrocar-
bons which have mutagenic and carcinogenic properties. Because of their
high molecular weight, it was expected that these compounds would
remain in the sediment and evaporation and dissolution would be of
minor importance. Studies included: �! analyses by high-pressure
liquid chromatography of selected polycyclic aromatic hydrocarbons
in sediments and animals; �! microbial degradation of selected
aromatic hydrocarbons; �! effects of oil on benthic animals; �!
effects of oil on microbial processes important in salt marsh metabo-
lism and productivity.

MATERIALS AND METHODS

Qn November 13, 1978, 40 gal �50 L! of a No. 5 fuel oil were
added to one acre �000 ms! of a ~S artina alterniflora salt marsh
b I i I wl i i . Ii. ~ h f8| II.
phenanthrene  80 g! and chrysene �0 g! were dissolved in the fuel
oil before the oil was added to the marsh. On December 5, l978, an
additional 20 gal �5 L! of' the fuel oil containing fluoranthene �0 g!,
phenanthrene �0 g! and chrysene � g! were added to a 10 m by 3 m
section within the previously oiled area. The ail was sprayed on the
surface of the marsh at low tide. Animals were collected at various
times after the oil additions and analyzed for polycyclic aromatic
hydrocarbons by high-pressure liquid chromatography. The marsh
sediment consisted of 61K sand �.062 to 2 mm particle size!, 12'
si lt �. 002 to .062 mm particle size! and 265 clay �.002 mm particle
size!. Median particle size was 0. 105 mm. Cores were taken, and the
top 2 cm of the cores were used for extraction and analysis of hydro-
carbons.

Animal tissues were homogenized in a blender for two minutes.
The sediment was mixed with an equal volume of water. Tissue or
sediment slurries were saponified with 4N NaOH by heating at 95'C
for two hours. The sample was mixed with 5 ml af hexane. The hexane
extracts were dried under nitrogen and the residue dissolved in
methanol �0 ql!. The concentrate was analyzed on a high-pressure
liquid chromatograph  Model 70008-Micrometrics! with a fluorescence
detector  Aminco Fluoro Monitor-American Instruments!. The chromato-
graph was fitted with either a 4 mm x 25 cm Spherisorb ODS or a
Partisi l 10-ODS column. The hydrocarbons were eluted with 65'f.
methanol in water with a tlow rate of 2 ml/min at 50 C. Calibration
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Figure 2.2. Polycyclic Aromatic hydrocarbons SeJected for Analysis,
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curves based on peak areas were prepared daily f' or each compound
to quantify the results.

A~ssa s for Siicrobiai processes

Sediment cores  8.5 cm diameter! were taken from the control and
oiled site during low tide. The control site was approximately 10 m
from the oil spi11 site and was separated from it by a small tidal
creek. Cores were processed within one hour in the laboratory. The
surface layer �-1 cm! and 5 cm layer �-6 cm! were sliced from the
core, and 1 cm3 cubes were used for microbial studies.

For total adeny'late measurements, sediment   1 cms! from the
rhizosphere was squeezed through a 1 mm mesh screen and into a 5 cc
disposable syringe. Ouplicate samples were extracted in 15 ml of
boi1ing   102'C! phosphate-citrate buffer  Bulleid, 1978!. The
extract was then treated as described by Tenore et al,   1979!.
Aliquots for each replicate were treated with approoriate enzymes to
convert ADP and AMP to ATP, ATP was measured on a Chem-Glow Photo-
meter  American Instrument Company!.

Bacterial counts were determined on sediment squeezed from the
rhizosphere. Samples were diluted and preserved in 0,22 i m filtered
estuarine water with formaldehyde �X v/v!. After appropriate dilution,
the cells were stained with acridine orange  final concentration .01/!.
Samples were filtered orto 0.2 qm Nuclepore filters  stained with
i rgalan black! and rinsed wi th 1 m'I filtered formaldehyde-distilled
water  Hobbie et al., 1977!. Bacterial cells that fluoresced green
ta red were counted with an epifluorescent Zeiss microscope.

Several metabolic processes were measured on relatively undis-
turbed sediment samples. Sediment samples  approximately 8-10 g net
weight! from the surface and 5 cm layers were placed into replicate
�! serum bottles  volume 40 cc!, Bottles with sediment samples
from the 5 cm layer were flushed with helium for five minutes. Ace-
tylene �0'!! and N 0  . Oll!! were added to replicates containing
surface and 5 cm sediments. The other two replicates were unaltered.
Samples were incubated at in situ temperatures, which ranged from
a low of 12'C in the winter to a high of 30'C in the summer. After
one hour, and again the following morning  approximately 20-22 hours
later!, .3 ml of the gas phase was removed with a 1 ml disposable
syringe and immediately injected into an analytical gas chromato-
graph  Carle Instruments!. Gases were separated on two co'lumns
 Porapak-40' N, COr.' g; and Molecular Sieve 13A! and detected with
thermal conductivity and flame ionization detectors in series. A
dual input integrator  Laboratory Oata Control! computed peak area.
All peak areas wiere normalized to detector response and nitrogen
gas. Standard gases were obtained from Hatheson Gas Products. Rates
were calculated from the change in gas composition over the incuba-
tion period and normalized to gram dry weight  samples dried at 80'C
for 24 hours!. 0: demand was computed only for surface sediments,
irrespective of gas composition in the bottles  four replicates per



29

sample period!. CQz production was calculated for all samples
incubated with or without CzH; and NzO  four replicates to compute
mean value!. Ethylene producton was observed only in bottles with
atmosphere enriched with C,Hz. N;G reduction was measured only in
those bottles containing abided N O  two replicates per depth!, Nq0
production was not observed in bottles with CzH;. CH< production
was calculated for samples that were rot exposed to CzH; and NzO two
replicates per depth!.

The signed test for paired variance was used to test whether
the mean values from each site were significantly different. Student-t
test was not used because normal distribution in microbial communities
and bacterial populations cannot be assumed to be due to possible
change in populations over time, temperature fluctuations and plant
growth in each area. Pa~red data from a minimum of ten sample means,
determined over the period from November 1978, to August 1979,
were tested. In addition to comparing the means from each site,
values from surface and 5 cm layers within both areas were analyzed.

Rates of microbial degradation of polycyclic aromatic hydrocar-
bons were determined by adding "C-labeled hydrocarbons to sediment-
seawater slurries � g sediment; 50 ml seawater! in 125 ml incubation
bottles capped with silicone stoppers. Radiolabeled hydrocarbons
used were '"C- 12-benz a!anthracene � 8 mci/mm-Amersham!, 3,4�
 benz, 3, 6-'~C! pyrene �1 mci/mIti-Amerisham!, '4C-chrysene �.,'x
mci/mm-Amerisham!, and '~C-9-phenathrene   11.3 mci/mm-Amersham!.
During the incubation the sediment was kept in suspension by shaking
 Lab-Line Junior Orbit Shaker!. After incubation for various time
intervals at the in situ temperature, the respired '4COq was collect-
ed on filters soaked with phenethylamine and counted with a liquid
scintillation counter.

Biological Samg ling

For a year prior to the oil spill, seasonal samples were taken
at 13 stations randomly chosen within the marsh site. The site con-
tained various growth forms of ~S artina: tall ~S artina creek bank;
tail ~Setting edge marsh; and short ~Sartina high iaarsh. At each
stat~on, a square frame � m"! was randomly positioned on the marsh,
and five dominant marsh epifaunal species were collected. These
included ribbed mussel, >1odiolus demissus; the southern periwinkle,
Littorina irrorata; the crab, Sesarma reticulatum; the mud crab,
~pano eus herbous»; and the fidrpper crab~ca ~pu nax. These five species
were seTected because they occur in high densities and because they
represent a wide spectrum of feeding types. Crabs were collected
on the surface and within burrows to a depth of six inches.

After the oil spill, samples were collected every two months.
Stations were chosen according to a stratified random sampling scheme.
Six or seven of the total 13 stations were chosen within the oil

spill area and the remainder randomly chosen within the control area.
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Again, the square frame was used and the same five epifaunal species
collected along with the mud snail, Nassarius obsoleta. In the
laboratory, the animals were washed with tap water and frozen until
analyzed. After thawing, the samples were sorted, total numbers of
each species counted and individual sizes  widths for crabs and
lengths for snails and mussels! recorded to construct size-class
histograms. For biomass estimates, individuals of each species
were dried at 80'C for 24 hours to obtain dry weight and then com-
busted at 475'C for 16 hours to obtain ash-free dry weight. For
mussels, tissue biomass  excluding shell! was recorded. Length-tissue
weight regressions for L. irrorata and N, obsoleta were used to
estimate biomass.

RESULTS

Chemical and Studies

After a heavy fuel oil was added to the marsh, high concentra-
tions of the selected poiycyclic aromatic hydrocarbons, i.e., phenan-
threne, chrysene and fluoranthene, were observed in sediment, oysters
and musseIs in the area. Extrapolation of these concentrations
to whole oil indicates that the highest concentration of total oil
was 120 r g/g sediment. Concentrations in the sediment remained high
for 45 days, followed by a rapid decrease during the next 100 days
 Figures 2.3 and 2.4!. Highest concentrations were obtained on day
45 when the concentrations of phenanthrene, chrysene and fluoranthene,
were 115, 105, and 76 ng/g sediment, respectively. On day 150,
phenanthrene was below the detection limits  less than 0.5 ng/g!,
and the concentrations of fluoranthene and chrysene were 15 and
20 ng/g, respectively.

A small port~ on of the mar sh �0 mz ! was heavily oi 1 ed a second
time on day 30. Although sediment, mussels and oysters were collected
at least 20 m from the re-oiIed site, some of the oil was carried
throughout the 4000 mz area. This may explain increases in the
hydrocarbon concentrations of' the sediment up to day 45. Oysters from

Hydrocarbons increased in mussels for 60 days following the
spill and then rapidly decreased  Figure 2.5!. There was a rapid
decrease in the concentration of all hydrocarbons in oysters 25
days after the spill, followed by a slower decrease for the following
100 days  Figure 2.6!. The times for the selected hydrocarbons
to decrease to 50ll of their highest values, i.e., half-life,
were approximately 100, 70 and 30 days for sediment, mussels and
oysters, respectively. After 150 days, chrysene and fluoranthene
were present at low concentrations, and phenanthrene was not detectable
in either sediment or animals. The rapid release of hydrocarbons by
oysters relative to mussels may be due to the position cf' oysters
on top of the sediment, while mussels are in the sediment. Thus,
mussels were continuously exposed to oiled sediment, whereas oysters
obtained hydrocarbons from water or suspended particles.
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Figure 2.3. Changes in the Concentration of Po]ycyclic Aromatic hydro-
carbons in Sediments after Addition of Fuet Oil.

Oil was added to 4000 m~ of marsh on day 0 and to a small 30 m~
area within the 4000 m~ area on day Z3. Sediments for analysis were col-
lected at least 20 m from the site of the second oil addition. Each point
represents the average value for four samples and the standard deviation
for each point is given in parentheses, The hydrocarbon concentration units
are nanogram per gram of sediment  wet wei ght! .
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Figure 2.4. High-Pressure Liquid Chromatograms of Extracts of Sediment.

Sediments were col aected from 4000 m~ portion of marsh at
8 and 'I6 weeks after addition of fuel oil No. 5. Also included is a
chromatogram of hydrocarbons from sediments of the control area. CoIumn
was a Spherisorb ODS run isocratically with 65% methanol in water with a
flow rate of 2 ml/min at 50'C.
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Figure 2.5. Changes in the Concentration of Polycyclic Aromatic Hydro-
carbons in Ribbed Mussels   Modiolus demissus! after Exposure
to Fuel Oi I .

Oil was added to 4000 m~ of marsh on day 0 and to a small 30 m~
area within the 4000 m2 area on day 23. Mussels were collected at least 20 m
from the site of the second oil addition. Each point represents the average
value for three samples. Hydrocarbon concentration units are nanogram per
gram of mussel tissue  wet weight!.
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Figure 2.6. Decrease in the Concentrations of Polycyclic Aromatic
Hydrocarbons in Oysters After Exposure to Low Levels of
Fuel Oil .

Oil was added to 4000 m of marsh on day 0 and to a small 30 m
area within the larger area on day 23. Oysters were collected at least 20 m
from the site on the second oil addition. Each point represents the average
value for three samples. Hydrocarbon concentration units are ng per gram
oyster tissue  wet weight!.
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the re-oiled area were analyzed; and although the initial hydrocarbon
concentrations were very high, rapid discharge of more than 85/
of the hydrocarbons occurred during the next 120 days  Figures 2,7 and
2.8!. The half-life of hydrocarbons from oysters in the heavily oiled
area was 40 days.

Decreases in the concentration of the different hydrocarbons in
sediment was due to weathering processes, including evaporation,
biodegradation and photochemical ox~dation. In addition, some of the
oil was probably carried away by tidal flow. A heavy fuel oil  No. 5!
was selected since it was assumed that most would remain on the sedi-
ment and would not be transported from the site. This appeared to
be the case since oil was not visible in adjacent areas and there
was no increase in hydrocarbons concentrations in control areas. The
selected polycyclic aromatic hydrocarbons were not detected in oysters
on a bar approximate]y 10 m from the spill. Since tides cross the
bar as water enters the spill area, only resuspended oil should
have been carried to these oysters.

The removal rate is believed to be due primarily to a combination
of microbial and photochemical oxidation. The high molecular weight
and the rate of hydrocarbon disappearance would argue that evaporation
of the selected polycyclic aromatic hydrocarbons was not important.
Rates of' microbial degradation, determined by adding radiolabeled
hydrocarbons, were much higher in sediment from the oiled area
than in control sediments  Figure 2.9!. The microbial degradation
rate of ~4C-chrysene at a concentration of 2.5 pg/g sediment was 5
ng/g sediment/day and 35 ng/g sediment/day for control and oiled
sediment, respectively. Similar differences in rates of degradation
were observed when '~C-phenanthrene was added to control and oiled
sediment.

Microbial studies, in addition to those discussed above, included
determination of total adenylates, bacterial counts, oxygen demand,
carbon dioxide production, ethylene production, methane production
and Nz0 reduction in sediments. The mean values of these mi crobiolo-
gical parameters for the oiled and control areas are given in Table 2. 1.
Comparison of all the mean values for the period after the oil
spi 1'i, November 1978 to August 1979, indicates that only two processes
were statisticaliy different in oiled and control areas. The concentra-
tions of adenylates were higher and COq producti on lower in the surface
layer of oiled areas relative to the controls. The 5 cm depth layer
showed no differences between control and oil-spill areas. Microbial
parameters for surface sediments were statistically different from
the 5 cm layer in both oiled and control areas. In general, biomass
 total adenylates and bacterial cell numbers! was higher in the
surface layer, but net metabolic processes were higher in the 5 cm
layer.

Macrofauna Studies

For a year prior to the oil spill, the marsh epifuana had lowest
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Figure 2.7. Decrease in the Concentrations of PolycycIic Rromatic
Hydrocarbons in Oysters After Exposure to High Levels
of Fuel Oil.

Oysters were collected from a 30 m~ portion of marsh exposed
to 75 liters of fuel oil No. 5. points represent the average value for
four samples. Hydrocarbon concentration units are nanogram per gram
oyster tissues  wet weight!.
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Figure 2,8. High-Pressure ' iquid Chromatograms of Lipid Extracts of
Oysters Exposed to High Levels of Fuel Oi l

Oysters were collected from a 30 m~ portion of marsh at
different times after exposure to 75 liters of fuel oil No. 5. Also
included is a chromatogram of oysters from the control area. Column was
a Spherisorb ODS run isocratically with 65% methanol in water with a
flow rate of 2 m'i/min at 50'C.
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'4C-Chrysene �.3 mci/mm! was added to sediment-water slurries
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5 cmSurface
OilOi 1 ControContro

Total adeny1ates
Ag/CC 2.90 + .65 *4.57 + 1.18 *1.56 + .83 *2.56 + .81

�0!  lo! �0! �0!

Bacteria

10~ cells/cc f0.53 .10
�2!

"1.10 + .19 ~0.81 + .13
�2! �2!

t0.56 + .09
�2!

O~ Oemand
nmoles/g h 90.5 ' 33,3 131 + 59.9

�7! �7!

COz Production
nmo1es/g h *57.6 + 28

�6!
*136 ~ 75

�6!
f986 + 353

�6!
360 + 86

�4!

CpH~ Produc'tion
nmoles/g h t1.58 + .46

�3!
~29. 5 + 12. 2 f139 + 85

�2! �5!
~1.72 + .83

�7!

CH~ Production
nmoles/g h '0,97 + .78 00.21 + .09

�3! �7!
f54.5 + 26,4 f15.4 + 6.65

  8! �7!

Nq0 Reduction 468 + 311

�5!
5.53 + 4.65 '3.57 + 1.95

�4! �2!
237 + 118

�6!

Significant difference  p < .05! between surface values and values obtained
from 5 cm in control area and oil spi11 area.

*Significant difference  p < .05! between values from control area and oil
spill area.

Table 2.1. Summary of total adenylates, bacterial numbers and metabolic pro-
cesses in an oi1ed salt marsh and in a non-treated control area. Significance
between paired values  control vs. oil and surface vs. 5 cm in both areas!
was evaluated by the signed test for paired variance. Ualues in parentheses are the
number of samples used to compute the mean +S.E.
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densities in winter followed by a spring-summer maximum and an
autumn decline  Figure 2. 10, Table 2.2!. Few organisms were found
at the marsh site in January 1977, due to an exceptionally cold winter
that resulted in high mortality of the epifauna. In spring, total
animal density increased to 5 organisms per m with a biomass of
7.2 g AFDW per m'. In August, a biomass of 7,2 AFDW per m was ob-
served. In the fa]l, density decreased to 15 individuals per m~ with
a biomass of 3.3 g AFDW per ma. L. ir«orate, U. ~unax and La. demissus
all showed large density increases in August 1977, and very Tow
biomass and density values in January 1976, and February 1978  Figure
2. »!.

A number of effects were observed on the marsh epibenthos as a
result of the addi tion of oil. The early spri ng increase in total
density and biomass was depressed in the oiled area but was quite
evident in the control area  Figure 2. 10!. The total density for the
control area in February 1979, was 17 organisms per m~ with a biomass
of .4 g AFDW per m~, while the oiled area had 2 organisms per m~ and
a biomass of .05 g AFDW per mz during the same samp1ing period. A
large density increase occur red in the oiled area in April 1979
resulting in 28 organisms per mz and a biomass increase to .3 g
AFDW per m~.

The epifauna showed three responses to the oil spill. These
included an increase, a decrease or no change in macrofuana species.
A initial increase occurred in N. obsoleta density �5 snails per m~!
in the oiled area one month after the spil'l  Figure 2. 12!. This
increase was due to immigration of aduIt snails from untreated areas
presumably to scavenge on animals killed by the oil. In the spring,
the densi ty in the oiled areas decreased to <I snai 1 per m ; while
in the control area, densities increased to 33 snails per m2. The
distribution of size classes of N. obsoleta in December 1979, indicated
very litt'le difference between the oiled area and the control area
�.29 cm vs. 1.24 cm!  Figure 2. 13!.

There was an immediate decrease in perwinkles, L. irrorata,
in the oiled area between Oecember 1978, through Februa~ry 19 9  Figure
2. 12!. During this period, the density decreased from 3 to 2 per mz
in the oiled area but increased from 3 to 16 in the control area.
Five months after the oil spill  April 1979!, periwinkle density
increased to 16 individuals per m in the oiled area, with a slight
biomass increase. The increased periwinkle density in the oiled
area was due to recolonization of the area by juvenile forms. This
can be shown by a comparison between size-class histograms for Littorina
from oiled and control areas on April 1979  Figure 2. 14!. A much
smaller mean size-class was observed in the oiled area  .98 cm! than
in the control area   1.39 cm!.

A third response was that of no significant change in density
or biomass after the spi11, as shown by U. puI nax  Figure 2. 12!. Crab
densi ty values were <I and 10 individuals per m in February and
April 1979, respectively, in the oiled area, and 1 and 8 individuals
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Plants recover by producing new growth which is usually seen within
two to three weeks after the spill. Only very large oil spills or
continual oiling will kil I ~Sartina rhizomes. In our experiments,
the ~S artina leaves yellowed and green shoots were observed three
weeks after the spil l.

Our studies indicated little effect of oil on a number of microbial
processes. Observed increases in hydrocarbon degradation rates
presumably resulted from increases in the numbers of petroleum de-
grading bacteria which have been reported after oil spills on salt
marshes  Kator and Herwig, 1977!. The addition of oil to marsh
sediment does not affect the reduction rate of nitrate, manganese,
iron and sulphate on the levels of chitinolytic, cellulolytic and
heterotrophic bacteria and fungi  DeLaune et al., 1979; Kator and
Herwig, 1977!. We reported above that oil did not affect bacterial
numbers, oxygen demand, ethylene production, methane production and
Nz0 reduction.

The mud snail, Nassarius obsoleta, and southern periwinkle,
Littorina irrorata, ~11 ustrate two modes of recolonization, i.e.,
immigration and larval settling, which occurred in the oiled area.
The large increase in Nassarius in the oiled area was presumably due
to migration from adjacent untreated areas to feed on dead anima'ls.
Many adult Littorina were killed by the oil and recolonization was
by larval settling. Thus, juvenile forms dominated during the spring
in the oiled area, Monk et al., �978! reported a decrease in the
population of Littorina saxati lus after a spill of diesel fuel on
the coast of Norway. The hatching success of Littorina li ttorea
collected from an area of Norway which was exposed to a large crude
oil spill was significantly less than that of a control population
 Staveland, 1979!. The decrease in Littorina observed by us was
due to direct mortality. Juvenile forms recolonized the oiled area
but whether their reproductive capabilities were impaired cannot
be answered. However, since concentrations of aromatic hydrocarbons
in the sediment were very low by the time juvenile Littorina re-
colonized the area, we predict that their reproductive capabilities
would not be affected.

As previously noted, there were no differences between U ~u nax
population in the oiled and control areas. Both areas had low
densities and biomass of crabs. This may be due to the winter behavior
of the crabs, in that they then become inactive and burrow into the
mud. Therefore, the effects of the oil on the crab population were
coupled with the seasonal changes, and definite alterations in the
population could not be determined in our short study.

Previous studies on the effects of oil and oil products on
marine communities  B'lumer, 1971; Scarratt and Zitko, 1972; Michael,
1977! emphasized the importance of separating the effects of oil on
benthic populations from changes due to seasonal and yearly trends.
Included in seasonal changes are major alterations in populations
due to naturally occurring catastrophes, such as exceptionally harsh



49

w1nters or abnormally low salin1ties. Declines in population size or
structure due to catastrophic stresses may completely mask alterations
due to the effects of the o11, unless an untreated area is available
for comparison.

The rate at which marsh fauna recovers from an oil spill depends
on the extent and intensity of the spill. The rate of epibenthic
recolonization by larval recrui tment and immigration of organisms
from nearby areas will depend on the size of the area affected and
the remoteness of the parent populations.

SUMMARY

After the addition of a heavy fuel oil to a S artina marsh in
the fall, the highest concentrations of phenanthrene, c rysene and
fluoranthene in the sediment were 112, 105 and 75 ng/g sediment,
respectively. These polycyclic aromatic hydrocarbons decreased
in concentration, and 150 days after the spill phenanthrene was
not detectable, and the concentrations of fluoranthene and chrysene
were IS and 20 ng/g, respectively. The times for these hydrocarbons
to decrease to 50% of their highest values, i.e. half-life, were
approximately 100, 70 and 30 days in sediment, mussels and oysters,
respectively. The rapid release of hydrocarbons by oysters relative
to mussels may be due to the position of oysters on top of the sediment
while mussels are in the sediment. Thus, mussels were continually
exposed to oiled sediment, whereas oysters obtained hydrocarbons only
from water or suspended particles.

The various microbial processes important in salt marsh metabolism
and product1vity, including bacteria numbers, oxygen demand, ethylene
production, methane production and N20 reduction, were not affected
by the oil. Microbial hydrocarbon degradation rates were very high
in the oiled marsh, presumably due to increases in the numbers of
petroleum degrading bacteria.

One of the first changes in the marsh after the addition of
oil was the yellowing and death of ~Sartina leaves. After three weeks
green shoots were observed, and in the spring no differences were
noted between S artina from the o11ed and control areas. The various
spec1es of bent ic macrotauna responded i n three ways to oil addition.
These 'included no change, an increase, or a decrease in the population.
Ho changes were noted 1n the populations for fiddler crabs, oysters and
mussels. Mud snails, Nassarious obsoleta, increased in density after
the spill due to immigration of adult snails from untreated areas to
scavenge on animals killed by the oil. Many of the adult perwinkles,
Littorina irrorata, were killed by the oil. In the spring, juvenile
~periw>nk e~s reco onized the oiled areas as a result of larvae
settling.

Addition of a heavy fuel oil to a Georgia salt marsh resulted
in high concentrations of polycyclic aromatic hydrocarbons in the
sediment and benthic animals. These initially hi gh concentrations
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rapidly decreased during the 20-week period following the spill.
Initially, effects of oil were observed on the marsh macrofauna
populations; but nine months after the spill, there appeared to be
little or no effect on the dominant marsh epifaunal species.



51

REFERENCES

Bender, M. E., E. A. Shearls, R. P. Ayers, C. H. Hershner, and R. J.
Huggett. 1977. Ecological effects of experimental oil spills
on estuarine coastal plain estuarine ecosystems. IN: Proceed-
ings of the 1977 oil spill conference, pp. 505-509. American
Petroleum Institute, Washington, D. C.

Blumer, M. and J. Sass. 1972. The West Falmouth oil spill. Tech.
Report. Ref. No. 72-19, Woods Mole Ocean. Inst..

Blumer, Mfa G. Souza, and J. Sass. 1970. Hydrocarbon pollution of
edib]e sheI]fish by an oi] spi]]. Mar. Bio]. 5: 195-202.

Bulleid, N. C. 1978. An improved method for the extraction of adenosive
tuphosphate from marine sediments and seawater. Limno]. Oceanogr.,
23: 174-178.

Burns, K. A. and J. M. Teal. 1971. Hydrocarbons incorporated into the
salt marsh ecosystem from the West Falmouth oil spill. Tech.
Report Ref. No. 71-69, Woods Hole Ocean. Inst.

DeLaune, R. D., W. H. Patrick, and R. J, Buresh. 1979. Effect of crude
oil on a Louisiana ~S artina alterniflora salt marsh. Environ.
Po 1 1ut. 20: 21-31.

Hobbie, J. E., R. J. Daley, and S. Jasper. 1971. A method for
counting bacteria on nuclipose filters. Appl. Environ, Microbiol.
33: 1225-1228.

Holt, Sf a S. Raba]ais, N. Rabalais, S. Cornelius, and J. S. Holland.
1978. Effects of an oil spill on salt marshes at Harbor Island,
Texas. I. Biology. IN: Proceedings af the conference on assess-
ment of eco'Iogical impacts of oil spills, pp. 344-352. American
Inst. of Biological Sciences, Washington, D. C.

Kator, H. and R. Herwig. 1977 Microbial responses after two experi-
mental oi] spills in an eastern coastal p]ain estuarine ecosystem.
IN: Proceedings of the 1977 oi] spill conference, pp. 517-522,
aerican Petroleum Inst., Washington, D. C.

Lee, R. F. 1977. Accumu]ation and turnover of petroleum hydrocarbons
in marine organisms. IN: Fate and effects of petroleum hydro-
carbons in marine ecosystems and organisms,D. A. Wolfe, ed., pp.
60-77. Pergamon Press, New York.

Bieri, R. H. and U. C. Stamoudis. 1977.
carbons from a No. 2 fuel oil spil]
environment, IN: Fate and effects
in marine ecosystems and organisms,
Pergamon Press, New York.

The fate of petroleum hydro-
in a seminatural estuarine

of petroleum hydrocarbons
D. A. Wolfe, ed., pp. 332-344.



52

Lee, R. F., W. S. Gardner, J. W. Anderson, J. W. Blaylock, and J.
Barwel 1-Clark. 1978. Fate of polycycl ic aromatic hydrocar-
bons in contro1led ecosystem enclosures. Environ. Sci. Technol.
12; 832-838.

Lytle, J. S. 1975. Fate and effects of crude oil on an estuarine
pond. IN: Proceedings of the 1975 conference on prevention and
control of oil pollution, pp. 595-600. American Petroleum Insti.,
Washington, 0. C.

MacLeod, W. D., D. W. Brown, R. G. Jenkins, and L. S. Ramos. 1977.
Intertidal sediment hydrocarbon levels at two sites on the Strait
of Juan de Fuca. IN: Fate and effects of petroleum hydrocarbons
in marine ecosystems and organisms, D. A, Wo1fe, ed., pp. 385-396.
Pergamon Press.

Matsushima, H, 1979. Correlation of polynuclear aromatic hydrocarbons
with environmental components in sediment from Hirakata Bay,
Japan. Agric. Biol. Chem. 43: 1447-1453,

Michael, A. D. 1977. The effects of petroleum hydrocarbons on marine
populations and communities. IN: Fate and effects of petroleum
hydrocarbons in marine organisms and ecosystems, D. A. Wolfe, ed.,
pp. 129-137. Pergamon Press, New York.

Monk, D. C., E. B. Cowell, and W. J. Syratt. 1978. The littoral
ecology of the area around Mongstad refinery, Fensfjorden,
during the three years after refinery covmissioning, 1975-1977.
Report to RaFinor a/s and Company, Mongstad. Referred to by
Staveland �979!. British Petroleum Company, London.

Neff, J. M., B. A. Cox, D. Dixit, and J. W. Anderson. 1976. AcCumu-
lation and release of petroleum-derived aromatic hydrocarbons
by four species of marine anumals. Mar. Biol. 38: 279-289.

Pancirov, R. J. and R. A. Brown. 1975. Analytical methods for poly-
nuclear aromatic hydrocarbons in crude oils, heating oils, and
marine tissues. IN: Proceedings of 1975 conference on preven-
tion and control of oil pollution, pp. 103- 113. American Petro-
leum Inst.

Scarra'tt, D. J. and V. Zitko. 1972. Bunker C oil in sediments and
benthic animals from shallow depths in Chedabucto Bay, N. S.,
J. Fish. Res. Bd. Can. 29: 1347-1350.

Staveland, J. T. 1979. Effects on hatching in Littorina littorea
after an oil spill. Mar. Pol lut. Bull., 10: ZZSBBB.

Tenore, K. R., R. B. Hanson, B. Dornseif, and C. Weiderhold. 1979.
The effect of organic nitrogen supplement of the utilization
of different sources of defilters. Limnol. Oceanogr. 24: 350-
355.




